WATERPROOFING
Sikaplan® MEMBRANE
SYSTEMS FOR TUNNELS
TECHNOLOGY & CONCEPTS
Sikaplan® MEMBRANE SYSTEMS – FOR ALL TYPES OF TUNNELS

TUNNEL CONSTRUCTIONS, exposed to statical and dynamic stress, as well as hydraulic influences of aggressive water, are designed to last for decades or centuries. This requires a reliable waterproofing system with sheet waterproofing membranes in order to protect the tunnel construction from water ingress and the concrete structure against harmful influences of aggressive groundwater.

Sikaplan® solutions allow installation into mined tunnels and shafts, or on the external face of cut- and cover tunnels. This versatility also means compatible transitions between different application areas and construction elements. The highly flexible membrane allows waterproofing of structures below the groundwater table even after structural cracking by settlements or seismic movements. Depending on the requirements, drained or pressurized systems can be defined.

TYPICAL APPLICATION

MINED TUNNELS AND SHAFTS

ROAD TUNNELS RAILWAY TUNNELS PRESSURE GALLERIES SHAFTS

CUT-&-COVER TUNNELS

ROAD TUNNELS ROAD GALLERIES RAILWAY TUNNELS METRO STATIONS

In order to secure the quality over expected service life, Sikaplan® sheet membranes are under permanent quality control and approved according to high demands of standardization. Experience since over 50 years with Sikaplan® membranes and an in-build repair and control system gives owners, specifiers and applicator trust in this type of waterproofing technology. Tunnel waterproofing with Sikaplan® sheet membranes means fast installation, even under wet conditions on site, independent from the substrate quality.

EXPOSURE IMPACT ON BELOW GROUND STRUCTURES

The following types of exposure may adversely influence the use, watertightness and durability of a tunnel structure, resulting in a reduced service life of the entire structure.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Impact on structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water ingress</td>
<td>Damage to structure, wiring and electrical installations, corrosion of steel reinforcement</td>
</tr>
<tr>
<td>Aggressive chemicals</td>
<td>Concrete damage (due to sulfate attack), corrosion of steel reinforcement (due to chloride attack)</td>
</tr>
<tr>
<td>Unequal static forces</td>
<td>Structural cracking</td>
</tr>
<tr>
<td>Dynamic forces</td>
<td>Structural cracking</td>
</tr>
<tr>
<td>Temperature variations</td>
<td>Condensation, scaling or cracking of concrete</td>
</tr>
<tr>
<td>Gas penetration</td>
<td>Gas penetration and exposure for users</td>
</tr>
<tr>
<td>Fungal/bacterial attack</td>
<td>Damage to the waterproofing system, finishes or contents</td>
</tr>
</tbody>
</table>
DURABILITY OF SHEET MEMBRANES

LAB-SIMULATIONS are necessary to predict the life time expectancy of a specific waterproofing membrane. The degradation process will be simulated at various temperatures and exposures times in the lab and physical characteristics such as tensile strength and elongation are measured after aging and compared with the initial performance. The end of the life time is defined in the relative change of the mechanical characteristics.

Behavior after storage in hot water of 2 PVC membrane samples: still conform with requirements according to ÖBV 4.7.

The actual most comprehensive durability tests are described in the Austrian ÖBV Tunnel Waterproofing guideline. There are several test methods described for both technologies – PVC-P and TPO membranes – to be met to achieve a service life of >100 years. The table below shows the most important test methods.

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Performance Requirements</th>
<th>EN</th>
<th>Duration</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavior after storage in hot water (+Leaching)</td>
<td>Reduction of tensile strength and elongation: ≤ 25%</td>
<td>14415</td>
<td>360 days</td>
<td>70°C</td>
</tr>
<tr>
<td></td>
<td>Change of mass: ≤ 7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of impact load (drop height): ≤ 40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavior after storage in saturated lime wash</td>
<td>Reduction of tensile strength and elongation: ≤ 25%</td>
<td>14415</td>
<td>360 days</td>
<td>50°C</td>
</tr>
<tr>
<td></td>
<td>Change of mass: ≤ 7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of impact load (drop height): ≤ 40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavior after storage in 5 – 6% sulphurous acid</td>
<td>Reduction of tensile strength and elongation: ≤ 25%</td>
<td>1847</td>
<td>120 days</td>
<td>23°C</td>
</tr>
<tr>
<td></td>
<td>Change of mass: ≤ 4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of impact load (drop height): ≤ 30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavior after storage in 0.5% sulphuric acid</td>
<td>Reduction of tensile strength and elongation: ≤ 25%</td>
<td>1847</td>
<td>360 days</td>
<td>50°C</td>
</tr>
<tr>
<td></td>
<td>Change of mass: ≤ 7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of impact load (drop height): ≤ 40%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Austrian ÖBV ‘Richtlinie Tunnelabdichtung’, Table 4.7

REAL-LIFE VALIDATION is needed to check and proof the results of the lab-simulation and the predicted life time expectancy of a specific waterproofing membrane. This can be done by collecting real exposed membrane samples during maintenance works which allows accessibility to the exposed membranes. These samples will be tested again and compared with some retained samples from the same production batch.

Silka had the opportunity to analyze 41 and 44 years real exposed waterproofing sheet membranes from two tunnels in Switzerland which were built in 1968 and 1970. Both membranes still possess material properties that exceed the requirements for new membranes. Based on the outstanding test results the aged membranes can be regarded as good as new and will achieve the required 100 years durability.

Lab testing (simulation) with 41 years old real exposed samples (validation), taken from the Reussport tunnel in Switzerland.

Comparison of lab testing (simulation) with 41 years old real exposed samples (validation), taken from the Reussport tunnel in Switzerland.

Membrane sample from excavated niche of the Reussport tunnel in Switzerland.
CONSIDERING THE APPLICATION of waterproofing membranes in tunnels, the long time experience of sealing, the practical welding behaviour, the economics and the technical characteristics of the wide plastic range, in general two technologies have excelled: Advanced plasticized PVC and highly flexible FPO (TPO) with an E1-2-Modulus < 55 N/mm². Both materials allow easy thermal welding without the necessity of extrusion seams.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>PVC-P</th>
<th>FPO (TPO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durability</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Ease of application</td>
<td>++</td>
<td>o</td>
</tr>
<tr>
<td>Welding properties</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Thermal and chemical resistance</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Detailing</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Long-term experience</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Flexibility</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Fire behaviour</td>
<td>+</td>
<td>o</td>
</tr>
<tr>
<td>Smoke behaviour</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Resistance to mechanical impact</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td>o</td>
<td>+</td>
</tr>
</tbody>
</table>

++ = excellent / + = good / o = fair

THE FOLLOWING SECTION gives an overview on the performance characteristics of different Sikaplan® membranes. Sikaplan® WP indicates products on base of plasticized polyvinylchloride (PVC-P), Sikaplan® WT products on base of flexible polyolefines (FPO).

CERTIFICATES FROM INDEPENDENT TESTING LAB

<table>
<thead>
<tr>
<th>Sikaplan® WP 2101</th>
<th>Sikaplan® WP 2110</th>
<th>Sikaplan® WP 1100</th>
<th>Sikaplan® WP 1181</th>
<th>Sikaplan® WT 2200</th>
<th>Sikaplan® WT 2280</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBV 4.6</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>OBV 4.7</td>
<td>-</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SIA</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ZTV-ING</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>REACH</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
IN THE APPLICATION FIELD of tunnels and underground structures, the flexibility of the waterproofing membrane is the key element to avoid membrane failures during application and after concreting of the inner concrete liner on irregular shotcrete substrate.

Typical application failures are low quality welding of the membranes which is directly related to the main technical characteristic: the flexibility.

High flexible membranes not only avoid difficulties of machine welding in uncomfortable conditions such as niches and cross sections, but also reduce potential failures of hand welding applications like welding of patch repairs or connection welding of waterstops onto membranes. If the welding can not be carried out very carefully, the continuity of the waterproofing sheets can not be maintained. Any failure in the seam weld will then cause leakages in the tunnel with potentially fatal results particularly if hydrostatic water pressure is present.

The flexibility of a material is described with the section elasticity module \(E_{12} \) according to EN ISO 527. The lower the \(E_{12} \)-Modulus the more flexible the membrane is which makes substrate preparation less critical and application much easier.

Because the stiffness of the membrane also affects the performance on uneven substrates, maximum values for substrate irregularities have been defined depending on the membrane technology.

The ratio of the max. diameter \(W \) to the depth \(D \) of irregularities shall be not less than 5:1 for PVC-P and not less than 10:1 for flexible TPO waterproofing membranes. Very stiff HDPE sheets require much stringent shotcrete evenness ratio of \(W/D \approx 15:1 \) which results in higher cost for substrate preparation.

Requirements of membrane flexibility in connection with shotcrete evenness

<table>
<thead>
<tr>
<th>Material type</th>
<th>PVC-P</th>
<th>FPO</th>
<th>LLDPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section elasticity module (E_{12}) according to ISO 527</td>
<td>(< 20 \text{ N/mm}^2)</td>
<td>(< 65 \text{ N/mm}^2)</td>
<td>(< 100 \text{ N/mm}^2)</td>
</tr>
<tr>
<td>Eveness of shotcrete (W:D)</td>
<td>(< 5:1)</td>
<td>(< 10:1)</td>
<td>(< 15:1)</td>
</tr>
</tbody>
</table>
MINED TUNNEL – Sikaplan® DRAINAGE SYSTEM

SELECTION CRITERIA

DRAINAGE – SINGLE LAYER – PARTIAL WATERPROOFING

PVC
Sikaplan® WP 1100 sheet membranes are used to resist against drained waters up to temperatures of +35°C and Sikaplan® WP 2101 up to +50°C. The most suitable thickness of Sikaplan® WP sheet membranes is specified with 2.00 mm for drained water.

<table>
<thead>
<tr>
<th>PVC Sikaplan® WP (PVC) sheet membranes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance against high temperature of groundwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlability and redundancy level of the system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety of waterproofing during service life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1 poor – 5 excellent)

FPO (TPO)
Sikaplan® WT 2200 sheet membranes are used for waterproofing against clear groundwater and groundwater containing hydrocarbons at temperatures of up to +40°C. The most suitable thickness of Sikaplan® WT sheet membranes is specified with 2.00 mm for drained water.

<table>
<thead>
<tr>
<th>FPO Sikaplan® WT (FPO) sheet membranes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance against high temperature of groundwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlability and redundancy level of the system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety of waterproofing during service life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1 poor – 5 excellent)
MINED TUNNEL – Sikaplan® BARRIER SYSTEM

SELECTION CRITERIA

BARRIER SYSTEM – SINGLE LAYER – FULLY ENCLOSED WATERPROOFING

PVC
Sikaplan® WP 1100 sheet membranes are used to resist against pressurised waters up to temperatures of +35°C, and Sikaplan® WP 2101 up to +50°C. The most suitable thickness of Sikaplan® WP sheet membranes is specified with 3.00 mm for hydrostatic pressure.

FPO
Sikaplan® WT 2200 sheet membranes are used for waterproofing against clear groundwater and groundwater containing hydrocarbons at temperatures of up to +40°C. The most suitable thickness of Sikaplan® WT sheet membranes is specified with 3.00 mm for hydrostatic pressure.
MINED TUNNEL – Sikaplan® ACTIVE CONTROL SYSTEM

SELECTION CRITERIA

ACTIVE CONTROL SYSTEM – DOUBLE LAYER – FULLY ENCLOSED WATERPROOFING

FPO
Sikaplan® WT 2200 sheet membranes are used for waterproofing systems that can also resist chemically aggressive groundwater and hydrocarbons at temperatures up to +40°C. The double layer system meets the highest demands for security and control of watertightness. The most suitable thickness of Sikaplan® WT 2200 is specified with 3.00 mm (first layer) and 2.00 mm embossed (second layer).

Rating for active control system

<table>
<thead>
<tr>
<th>Sikaplan® WT (FPO) sheet membranes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance against high temperature of groundwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controllability and redundancy level of the system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety of waterproofing during service life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1 poor – 5 excellent)
SELECTION CRITERIA

DRAINAGE - SINGLE LAYER - PARTIAL WATERPROOFING

PVC
Sikaplan® WP 1100 sheet membranes are used to resist against drained waters up to temperatures of +35°C and Sikaplan® WP 2101 up to +50°C. The most suitable thickness of Sikaplan® WP sheet membranes is specified with 2.00 mm for drained water.

FPO
Sikaplan® WT 1200 reinforced sheet membranes are used for waterproofing against clear groundwater and hydrocarbons groundwater at temperatures of up to +40°C. The most suitable thickness of Sikaplan® WT sheet membranes is specified with 2.00 mm for drained water.

Rating for drainage system
Sikaplan® WP (PVC) sheet membranes
(1 poor – 5 excellent)

Resistance to chemicals
Resistance against high temperature of groundwater
Controlability and redundancy level of the system
Safety of waterproofing during service life

Rating for drainage system
Sikaplan® WT (FPO) sheet membranes
(1 poor – 5 excellent)

Resistance to chemicals
Resistance against high temperature of groundwater
Controlability and redundancy level of the system
Safety of waterproofing during service life

CUT-AND-COVER
Sikaplan® DRAINAGE SYSTEM

Structural Concrete Sikaplan® W Felt Sikaplan® WP/WT Sika® Drain SikaSwell® Drainage Pipe
CUT-AND-COVER
Sikaplan® BARRIER SYSTEM

SELECTION CRITERIA

BARRIER SYSTEM – SINGLE LAYER – FULLY ENCLOSED WATERPROOFING

PVC
Sikaplan® WP 1100 sheet membranes are used to resist against pressurised waters up to temperatures of +35°C and Sikaplan® WP 2101 up to +50°C. The most suitable thickness of Sikaplan® WP sheet membranes is specified with 3.00 mm for hydrostatic pressure.

FPO
Sikaplan® WT 1200 reinforced sheet membranes are used for waterproofing against clear groundwater and hydrocarbons groundwater at temperatures of up to +40°C. The most suitable thickness of Sikaplan® WT sheet membranes is specified with 3.00 mm for hydrostatic pressure.
ANCILLARY PRODUCTS

DESCRIPTION

Fixing discs for the spotwise and temporary fixing of sheet membranes at vertical and overhead areas to be waterproofed.

Injection sockets or ports for the inspection and control of watertightness, and for the injection of compartments, are either spot welded on single layer membrane systems, or fully welded on double layer systems. These sockets are connected with special, highly elastic PU tubes to accessible injection ports on the inside concrete surface.

Full range of waterbars, specially designed for use in combination with sheet membranes:
- Wide welding flanges for easy and watertight welding against the waterproofing membrane
- Injection channels to eliminate honeycombing
- Especially in overhead applications

Protection sheets over the installed waterproofing membrane are mainly used as protection measures against reinforced concrete or backfilling. In addition, if embossed, they allow the repair injection material to distribute easily.

Sikaplan® WP SERIES (PVC BASED)

- Sikaplan® WP Disc PVC yellow
- Sikaplan® WP Control Socket

Sikaplan® WT SERIES (FPO BASED)

- Sikaplan® WT Disc PE grey
- Sikaplan® WT Control Socket PE

FLEXODRAIN SYSTEM

Sika Flexodrain to lead drain water into lateral drainage:
1. Halfpipe
2. Leakwater collector
3. Y-connecting piece
4. Hose collector
5. Drain hose
6. Drain-pipe inlet piece

DRAINAGE ANGLE

Sikaplan® WP Drainage angle allows a fast and safe termination of the waterproofing membrane around the drainage pipe for umbrella systems, for Sikaplan® WP and WT.
Completed tunnel structures that are waterproofed with Sikaplan® sheet membranes are intended to be exposed to water under hydrostatic pressure. It is therefore essential to test the watertightness of the completed membrane installation works, prior to covering and protecting the membrane from ongoing construction works. There are a variety of different methods to check and approve the welded seams and overlaps in particular on the installed membrane.

PEEL TEST

Peel tests have to be performed on separate membrane samples at the beginning of each membrane application to set the machine parameters, as well as at regular intervals during the application to adjust the welding setup according to the changing climatic conditions.

VISUAL INSPECTION

Visual checking with the aid of a broad screw driver to search for voids or misses at seam edges. The surface area can be visually checked by control of signal layer.

COMPRESSED AIR TESTING

Air pressure testing using an air pressure pump, reverse flow valve and test needle that is inserted into a test channel between the seams of double seam welding (suitable for double seams only).

VISUALLY WITH ELECTRICAL SENSOR

Area defect testing with an electrical copper wire brush holiday test. Electrical sparks signalizes capacitivities in seams. Any defects in the membrane or at seam edges can be detected, if an electrical conductor is placed underneath.

VACUUM TESTING OF DETAILS BY VACUUM BELL

Vacuum testing using a vacuum bell and electrical vacuum pump for testing of details. After treating the seam edges with soap solution, the vacuum bell is firmly pressed over the area to be tested and the vacuum applied. Any leaks are clearly seen by bubbling of the soap solution under vacuum.

VACUUM TESTING OF COMPARTMENT OVER SIKAPLAN CONTROL SOCKETS

Vacuum testing of compartments of a double layer membrane system using vacuum pump. During the testing the vacuum should not drop less than 20% in 10 minutes to be completely water tight.

THE UNIQUE BENEFIT: LEAK CONTROL AND REPAIR BACK-UP

Tunnels under hydrostatic pressure are waterproofed with Sikaplan® sheet waterproofing membranes including compartments and injection backup. Each compartment with an area of approx. 150 m² is combined with four to five control sockets plus control tubes. The control tubes lead to a socket box on the inside of the structure, allowing easy access and quick repair at any time of the entire service life of the structure. In case of failures in the membrane, leaks can be easily detected as leak-water appears at the end of the control tube. Repairing of leaks can be performed by injecting Sika® Injection-306 resin through the Sika control tube. Sika® Injection-306 is a low viscosity fast reacting polyacrylate injection liquid, which mixes with leak water during the injection process and reacts to form a solid, but highly elastic and expandable gel in the gap between the structural concrete and the membrane within a compartment area, or between the membrane layers in the case of double layer systems.

- In case of damaged membrane, water can locally underflow the membrane but will then be limited by waterstops cast into the concrete to create compartments.
- Any leaking compartment can easily be detected through the control ports that remain accessible from inside the completed structure.
- Repairing any leaks in the membrane is achieved by injection of Sika® Injection-306 through the integral injection flanges accessible from inside the completed structure.
- The Sika injection resin reacts with water to form a solid but flexible, elastic gel in the void between the structural concrete and the membrane within the compartmentalized section to seal the damaged area.
SIKA HAS DEVELOPED two high performance bonded tape sealing solutions that are both quick and easy to install, and with the same standard and level of watertightness as the whole cross section/transition waterproofing system (i.e. the Sikaplan Membrane Compartment System). Dependent on which membrane waterproofing system is selected for each project, Sika provides this bonded tape sealing solution based on a compatible formulation of either PVC – “The Sikaplan® WP Tape System”, or FPO – “The Sikaplan® WT Tape System”.

Uses:
- Watertight connection of crossings between parallel tunnels
- Watertight transitions between TBM driven tunnels to station boxes
- Forming compartment systems together with Sikaplan® tunnel membranes in Cut and Cover tunnels
- Watertight terminations of Sikaplan® WP/WT membrane systems

Main properties:
- The system cost is “highly” competitive in comparison to any clamped solution.
- No need for the costly mortar beds/build-ups required for mechanically clamped systems
- Proven durability:
 - The FPO based Sikaplan® WT Tape-200 has the same formulation as Sikaplan® WT 2200 Series with proven ageing behaviour >120 years and a well-documented track record
 - The PVC based Sikaplan® WP Tape-200 has the same formulation as Sikaplan® WP 1100 Series with proven ageing behaviour >100 years and a well-documented track record
- Full material/system compatibility and tested life expectancy
- Minimizes the risk of failures at critical details

CHARACTERISTICS / ADVANTAGES
Sikaplan® WP Tape-200 based on PVC is a white/black tape modified on the black side to provide excellent adhesive properties with the Sikadur®-31 CF adhesive, for bonding to concrete and steel surfaces.
- Very good bond characteristics
- Long-term water resistance
- Optimized workability, heat weldable
- Optimized flexibility with high tensile strength and multiaxial elongation
- Elastomeric behaviour
- Flexible in cold temperatures
- Bonds the membrane tape securely to the concrete substrate at terminations and fixings
- No lateral water underflow

Sikaplan® WT Tape based on FPO is a grey/black tape modified on both sides. Both, black and grey sides have excellent bonding properties with Sikadur®-31 CF epoxy adhesives to concrete and steel.
- Excellent adhesion between the tape and adhesives means no solvent activation of the tape is required on site
- Fast and easy to install
- Suitable for installation on both dry and damp concrete surfaces
- Performs well within a wide range of temperatures
- Good adhesion to many different material substrates
- The adhesives are available in normal and rapid hardening grades to suit different conditions and requirements
- Root penetration resistant
- No lateral water underflow

See also brochure waterproofing Sikaplan® WP/WT tapes
It is common practice for the secondary linings in double-shell tunnels to use in-situ concrete. This is cast-in-place by large movable formwork assemblies on rails, which are usually between 10 m and 12.5 m long. This approach provides a fast and economical solution for the regular cross sections of long tunnels. However, there are technical and commercial limitations: in short tunnels, tailor-made formwork assemblies might not be cost effective.

- For changing diameters, widening sections, cross-passages etc., the formwork has to be modified or even completely replaced.
- In these instances, a secondary lining made of shotcrete instead of in-situ concrete can provide the following advantages:
 - Lower complexity of construction operations
 - The possibility of saving time and money because of no need for costly formwork

When SikaFiber® is added to the shotcrete, there can be additional cost savings because of reduced reinforcement requirements and operations. This solution is therefore an ideal replacement for in-situ-poured / cast-in-place concrete linings and can be useful for short tunnels, and wherever the regular cross section changes, e.g. in widenings, junctions, openings and cross passages.

However, shotcrete does not adhere to smooth synthetic sheet membranes; therefore it is necessary to implement a rebound reduction system. A steel mesh is installed over the waterproofing membrane, reducing the rebound and/or taking over the static loads of the newly applied shotcrete while it is fresh. The mesh has to be anchored into the substrate behind the membrane, which without any additional measures, would create penetrations and potential leaks through the waterproofing system. This problem can readily be solved in two different ways:

1. The Sika®Anchor/BA-Anchor System is a hard synthetic shaft connected to a flexible Plastic flange made of Sikaplan® WP or WT membranes for steel mesh fixation.
2. The Sikaplan® WP or WT Trumpet Flange allows a watertight penetration of conventional rock anchors for fixing the rebound reducing steel mesh.

![Image of Sika®Anchor/BA-Anchor System](image1)

![Image of Sikaplan® WP or WT Trumpet Flange](image2)
GLOBAL BUT LOCAL PARTNERSHIP

WE ARE SIKA
Sika is a specialty chemicals company with a leading position in the development and production of systems and products for bonding, sealing, damping, reinforcing and protecting in the building sector and the motor vehicle industry. Sika’s product lines feature concrete admixtures, mortars, sealants and adhesives, structural strengthening systems, industrial flooring as well as roofing and waterproofing systems.

Our most current General Sales Conditions shall apply. Please consult the most current local Product Data Sheet prior to any use.

Sika Hellas ABEE
15 Protomagias str.
GR 145 68, Kryoneri,
Attica, Greece

Contact
Tel. + 30 210 81 60 600
Fax + 30 210 81 60 606
Mail: sika@gr.sika.com